Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Energy exchanges between large-scale ocean currents and mesoscale eddies play an important role in setting the large-scale ocean circulation but are not fully captured in models. To better understand and quantify the ocean energy cycle, we apply along-isopycnal spatial filtering to output from an isopycnal 1/32° primitive equation model with idealized Atlantic and Southern Ocean geometry and topography. We diagnose the energy cycle in two frameworks: 1) a non-thickness-weighted framework, resulting in a Lorenz-like energy cycle, and 2) a thickness-weighted framework, resulting in the Bleck energy cycle. This paper shows that framework 2 is more useful for studying energy pathways when an isopycnal average is used. Next, we investigate the Bleck cycle as a function of filter scale. Baroclinic conversion generates mesoscale eddy kinetic energy over a wide range of scales and peaks near the deformation scale at high latitudes but below the deformation scale at low latitudes. Away from topography, an inverse cascade transfers kinetic energy from the mesoscales to larger scales. The upscale energy transfer peaks near the energy-containing scale at high latitudes but below the deformation scale at low latitudes. Regions downstream of topography are characterized by a downscale kinetic energy transfer, in which mesoscale eddies are generated through barotropic instability. The scale- and flow-dependent energy pathways diagnosed in this paper provide a basis for evaluating and developing scale- and flow-aware mesoscale eddy parameterizations. Significance Statement Blowing winds provide a major energy source for the large-scale ocean circulation. A substantial fraction of this energy is converted to smaller-scale eddies, which swirl through the ocean as sea cyclones. Ocean turbulence causes these eddies to transfer part of their energy back to the large-scale ocean currents. This ocean energy cycle is not fully simulated in numerical models, but it plays an important role in transporting heat, carbon, and nutrients throughout the world’s oceans. The purpose of this study is to quantify the ocean energy cycle by using fine-scale idealized numerical simulations of the Atlantic and Southern Oceans. Our results provide a basis for how to include unrepresented energy exchanges in coarse global climate models.more » « less
-
Abstract. We describe an idealized primitive-equation model for studying mesoscale turbulence and leverage a hierarchy of grid resolutions to make eddy-resolving calculations on the finest grids more affordable.The model has intermediate complexity, incorporating basin-scale geometry with idealized Atlantic and Southern oceans and with non-uniform ocean depth to allow for mesoscale eddy interactions with topography.The model is perfectly adiabatic and spans the Equator and thus fills a gap between quasi-geostrophic models, which cannot span two hemispheres, and idealized general circulation models, which generally include diabatic processes and buoyancy forcing.We show that the model solution is approaching convergence in mean kinetic energy for the ocean mesoscale processes of interest and has a rich range of dynamics with circulation features that emerge only due to resolving mesoscale turbulence.more » « less
-
Abstract There are two distinct parameterizations for the restratification effect of mesoscale eddies: the Greatbatch and Lamb (1990, GL90,https://journals.ametsoc.org/view/journals/phoc/20/10/1520-0485_1990_020_1634_opvmom_2_0_co_2.xml?tab_body=abstract-display) parameterization, which mixes horizontal momentum in the vertical, and the Gent and McWilliams (1990, GM90,https://journals.ametsoc.org/view/journals/phoc/20/1/1520-0485_1990_020_0150_imiocm_2_0_co_2.xml) parameterization, which flattens isopycnals adiabatically. Even though these two parameterizations are effectively equivalent under the assumption of quasi‐geostrophy, GL90 has been used much less than GM90, and exclusively inz‐coordinate models. In this paper, we compare the GL90 and GM90 parameterizations in an idealized isopycnal coordinate model, both from a theoretical and practical perspective. From a theoretical perspective, GL90 is more attractive than GM90 for isopycnal coordinate models because GL90 provides an interpretation that is fully consistent with thickness‐weighted isopycnal averaging, while GM90 cannot be entirely reconciled with any fully isopycnal averaging framework. From a practical perspective, the GL90 and GM90 parameterizations lead to extremely similar energy levels, flow and vertical structure, even though their energetic pathways are very different. The striking resemblance between the GL90 and GM90 simulations persists from non‐eddying through eddy‐permitting resolution. We conclude that GL90 is a promising alternative to GM90 for isopycnal coordinate models, where it is more consistent with theory, computationally more efficient, easier to implement, and numerically more stable. Assessing the applicability of GL90 in realistic global ocean simulations with hybrid coordinate schemes should be a priority for future work.more » « less
-
Abstract Ocean observations are expensive and difficult to collect. Designing effective ocean observing systems therefore warrants deliberate, quantitative strategies. We leverage adjoint modeling and Hessian uncertainty quantification (UQ) within the ECCO (Estimating the Circulation and Climate of the Ocean) framework to explore a new design strategy for ocean climate observing systems. Within this context, an observing system is optimal if it minimizes uncertainty in a set of investigator‐defined quantities of interest (QoIs), such as oceanic transports or other key climate indices. We show that Hessian UQ unifies three design concepts. (1) An observing system reduces uncertainty in a target QoI most effectively when it is sensitive to the same dynamical controls as the QoI. The dynamical controls are exposed by the Hessian eigenvector patterns of the model‐data misfit function. (2) Orthogonality of the Hessian eigenvectors rigorously accounts for redundancy between distinct members of the observing system. (3) The Hessian eigenvalues determine the overall effectiveness of the observing system, and are controlled by the sensitivity‐to‐noise ratio of the observational assets (analogous to the statistical signal‐to‐noise ratio). We illustrate Hessian UQ and its three underlying concepts in a North Atlantic case study. Sea surface temperature observations inform mainly local air‐sea fluxes. In contrast, subsurface temperature observations reduce uncertainty over basin‐wide scales, and can therefore inform transport QoIs at great distances. This research provides insight into the design of effective observing systems that maximally inform the target QoIs, while being complementary to the existing observational database.more » « less
An official website of the United States government
